MORPHINE
Synonyms:
morphinum
morphia
MS contin
duramorph
oramorph
Data
Relevant Physicochemical:
MW: 285.3 morphine, 461.5 morphine glucuronide
Formula: C17H19NO3 morphine, C23H27NO9 morphine glucuronide
Chemical Name: (5a,6a)-7,8-didehydro-4,5-epoxy-17-methylmorphinan-3,6-diol
Solubility: drug usually contains 5 molecules of water, soluble in water
and organic solvents
Appearance: white, crystalline powder
Images:
General Relevancy:
Morphine is a primary constituent of opium and is used primarily
in the relief of severe pain. Morphine may also be present as a metabolite
after heroin administration. It is metabolized in the body to
morphine-3-glucuronide (M3G), morphine-6-glucuronide (M6G) and other minor
metabolites. The metabolites, M3G and M6G, possess pharmacological activity.
Research has indicated that M6G is effective as an analgesic and M3G possesses
neuroexcitatory activity. Studies suggest M3G may play a role in the
development of tolerance in individuals chronically exposed to morphine. Both
metabolites are eliminated primarily via the kidney. Changes in renal function
can result in the accumulation of M6G and M3G with little change in the blood
concentration of free morphine. The resultant increase in M6G may be
contributory to toxicity in patients.
(Morfin merupakan konstituen
utama dari opium dan digunakan terutama dalam menghilangkan rasa sakit yang
parah. Morfin juga dapat hadir sebagai metabolit setelah pemberian heroin. Hal
ini dimetabolisme dalam tubuh menjadi morfin-3-glukuronat (M3G),
morfin-6-glukuronat (M6G) dan metabolit kecil lainnya. Metabolit, M3G dan M6G,
memiliki aktivitas farmakologis. Penelitian telah menunjukkan bahwa M6G efektif
sebagai analgesik dan M3G memiliki aktivitas neuroexcitatory. Studi menunjukkan
M3G mungkin memainkan peran dalam perkembangan toleransi pada individu terpajan
terhadap morfin. Kedua metabolit dieliminasi terutama melalui ginjal. Perubahan
fungsi ginjal dapat mengakibatkan akumulasi M6G dan M3G dengan sedikit
perubahan dalam konsentrasi darah morfin bebas. Peningkatan yang dihasilkan di
M6G mungkin iuran untuk toksisitas pada pasien.)
Mechanism of Action:
Morphine
produces its analgesic and sedating effects primarily through stimulation of
the m opioid receptor (MOR). Receptor sites throughout the central nervous
system and gastrointestinal tract mediate pain, respiratory rate, euphoria,
constipation and other effects associated with morphine and the opioid drugs.
Glucuronidation at the 6-hydroxyl site of morphine and codeine does not
interfere with binding to MOR.
This explains why M6G possesses activity comparable to morphine. On the other
hand, glucuronidation at the 3-hydroxyl site interferes with MOR recognition of
opioids including morphine and hydromorphone. Despite less activity at MOR,
these metabolites are not devoid of physiological effects. Instead, M3G and
hydromorphone-3-glucuronide produce neuro-excitatory effects, possibly through
activation of N-methyl-D-aspartic acid (NMDA) receptors
Morfin menghasilkan efek analgesik dan
penenang terutama melalui stimulasi dari reseptor opioid m (MOR). Reseptor
situs di seluruh sistem saraf pusat dan saluran gastrointestinal nyeri
menengahi, laju napas, euforia, sembelit dan efek lain yang berhubungan dengan
morfin dan obat opioid. Glucuronidation di situs-6 hidroksil morfin dan kodein
tidak mengganggu mengikat MOR. Hal ini menjelaskan mengapa M6G memiliki
aktivitas sebanding dengan morfin. Di sisi lain, glucuronidation di situs
3-hidroksil mengganggu pengakuan MOR opioid termasuk morfin dan hidromorfon.
Meskipun aktivitas kurang MOR, metabolit tidak bebas dari efek fisiologis.
Sebaliknya, M3G dan hidromorfon-3-glukuronida menghasilkan neuro-rangsang efek,
mungkin melalui aktivasi N-methyl-D-aspartic acid (NMDA) reseptor
Metabolism and Pharmacokinetics:
t1/2 morphine: 1.3-6.7 hr [1]
t1/2
M6G: 2.5-4.7 hr [12]
t1/2 M3G: 2.4-3.8 hr [12]
To
make sense of morphine metabolism the structure-activity relationships must be
understood. Alterations to the structure change the pharmacological activity
and may have important clinical sequelae. The basic principles have been known
for some time, and were well summarised in a WHO Bulletin published as long ago
as 1955 [BRAENDEN et al, 1955].
The
most important positions on the morphine molecule, because of their
implications for both activity and morphine metabolism, are the phenolic
hydroxyl at position 3, the alcoholic hydroxyl at position 6, and at the
nitrogen atom (Figure 1).
Both
hydroxyl groups can be converted to ethers or esters (e.g. heroin,
diacetylmorphine) and these changes alter clinical effect. Changes on the
hydroxyl groups are opposite in direction; additions at the phenolic 3-hydroxyl
group reduce pharmacological activity considerably, by perhaps more than 90%.
By contrast, modification at the alcoholic 6-hydroxyl position results in an
activation of the molecule, with the resulting compound being 2-4 times more potent
as an analgesic than morphine after parenteral dosing in standard tests.
These
rules are not absolute, however, and some substitutions at the 6-hydroxyl (e.g.
conjugation with long aliphatic acids) reduce activity because of steric and
other considerations. Short chain fatty acid substitutions (such as
3,6-dibutanoylmorphine) have been used to increase the lipophilicity and
potency of morphine [OWEN & NAKATSU, 1984; TASKER AND NAKATSU, 1984].
The
tertiary character of the nitrogen atom is crucial for morphine's analgesic
activity. Chemical modifications which make the nitrogen quaternary (as with N
-oxide) greatly diminish analgesic potency because of reduced penetration into
the central nervous system. Changes to the methyl substituent on the nitrogen
are also important; replacement of the methyl group with 3-carbon alkyl groups
not only reduces the analgesic action, but actually produces compounds which
antagonise the actions of morphine, such as nalorphine.
The majority (~65%) of a dose of morphine is excreted as
glucuronide conjugates. Both glucuronides are formed by the 2B7 isoform of
uridine-5’-diphosphate glucuronosyltransferase (UGT2B7) in the liver, with M3G
predominating. About 5% of a dose is demethylated to normorphine, which is also
mostly glucuronidated. Normorphine and its conjugate are readily detected in
urine. The excretion of M3G is through bile, feces, and urine. Extensive
enterohepatic recirculation causes much of the biliary M3G to be excreted in
urine. In fact, the 72-hour urine includes about 87% of a morphine dose,
excreted as free morphine (10% of dose) and various metabolites. The figure
below describes the relationship between morphine and its glucuronide
metabolites in plasma after iv administration.
(Untuk memahami metabolisme morfin
struktur-aktivitas hubungan harus dipahami. Perubahan pada struktur mengubah
aktivitas farmakologi dan mungkin memiliki gejala sisa klinis yang penting.
Prinsip-prinsip dasar telah dikenal selama beberapa waktu, dan baik diringkas
dalam Buletin WHO diterbitkan sejak tahun 1955 [et al BRAENDEN, 1955].
Posisi yang paling penting pada molekul morfin, karena implikasi mereka untuk
aktivitas dan metabolisme morfin, adalah hidroksil fenolik pada posisi 3, yang
hidroksil beralkohol pada posisi 6, dan pada atom nitrogen (Gambar 1).
Kedua kelompok hidroksil dapat dikonversi ke eter atau ester (misalnya heroin,
diacetylmorphine) dan perubahan ini mengubah efek klinis. Perubahan pada gugus
hidroksil yang berlawanan arah, penambahan pada kelompok 3-hidroksil fenolik
mengurangi aktivitas farmakologi cukup, oleh mungkin lebih dari 90%.
Sebaliknya, modifikasi pada 6-hidroksil hasil beralkohol posisi dalam aktivasi
molekul, dengan senyawa yang dihasilkan menjadi 2-4 kali lebih kuat sebagai
analgesik dari morfin setelah dosis parenteral dalam tes standar.)
Aturan-aturan ini tidak mutlak, bagaimanapun, dan beberapa substitusi di
(konjugasi misalnya dengan asam alifatik panjang) 6-hidroksil mengurangi
aktivitas karena pertimbangan sterik dan lainnya. Pendek rantai substitusi asam
lemak (seperti 3,6-dibutanoylmorphine) telah digunakan untuk meningkatkan
lipofilisitas dan potensi morfin [Owen & Nakatsu, 1984; Tasker DAN Nakatsu,
1984].
Karakter tersier dari atom nitrogen sangat penting untuk
aktivitas analgesik morfin itu. Modifikasi kimia yang membuat nitrogen
kuartener (seperti N-oksida) sangat mengurangi potensi analgesik karena
mengurangi nilai penetrasi ke dalam sistem saraf pusat. Perubahan substituen
metil pada nitrogen yang juga penting, penggantian kelompok metil dengan
3-karbon gugus alkil tidak hanya mengurangi tindakan analgesik, tapi
benar-benar menghasilkan senyawa yang memusuhi tindakan morfin, seperti
nalorphine.
(Mayoritas (~ 65%) dari dosis morfin diekskresikan sebagai konjugat
glukuronat. Kedua glucuronides dibentuk oleh isoform 2B7 dari uridin
difosfat-5'-glucuronosyltransferase (UGT2B7) dalam hati, dengan M3G
mendominasi. Sekitar 5% dari dosis yang demethylated untuk normorphine, yang
juga sebagian besar glucuronidated. Normorphine dan konjugat yang dapat segera
dideteksi dalam urin. Ekskresi M3G adalah melalui empedu, feses, dan urin.
Resirkulasi enterohepatik yang luas menyebabkan banyak M3G empedu akan
diekskresikan dalam urin. Bahkan, urin 72 jam mencakup sekitar 87% dari dosis
morfin, diekskresikan sebagai morfin bebas (10% dari dosis) dan metabolit
berbagai. Gambar di bawah ini menggambarkan hubungan antara morfin dan
metabolit glukuronat dalam plasma setelah iv administrasi.)
There does not appear to be any
genetic variation in glucuronide formation by UGT2B7. However, ethanol,
naltrexone, naloxone and ranitidine may interfere with UGT2B7 activity. In
addition, steroid hormones and bilirubin in newborn infants are metabolized by
UGT2B7. Genetic differences in other glucuronosyl transferase enzymes (e.g.,
Gilbert’s syndrome) do not appear to alter morphine pharmacokinetics. The
ratios of free morphine, M6G and M3G have been investigated as predictive
markers for a variety of physiological outcomes including effectiveness of
analgesia and acute overdose with heroin (see Critical Concentrations below).
Levels of M3G peak around 2 hours after morphine administration, exceeding the
concentration of free morphine remaining in serum. M6G is slow to cross the
blood brain barrier during both the absorptive and elimination phases.
(Ada tampaknya tidak akan ada variasi genetik dalam pembentukan glukuronat oleh
UGT2B7. Namun, etanol, naltrexone, nalokson dan ranitidine dapat mengganggu
aktivitas UGT2B7. Selain itu, hormon steroid dan bilirubin pada bayi baru lahir
yang dimetabolisme oleh UGT2B7. Perbedaan genetik pada enzim transferase
glucuronosyl lainnya (misalnya, sindrom Gilbert) tidak muncul untuk mengubah
farmakokinetik morfin. Rasio morfin bebas, M6G dan M3G telah diteliti sebagai
penanda prediktif untuk berbagai hasil fisiologis termasuk efektivitas
analgesia dan overdosis akut dengan heroin (lihat Konsentrasi Kritis bawah).
Tingkat M3G puncak sekitar 2 jam setelah pemberian morfin, melebihi konsentrasi
morfin kosong yang tersisa dalam serum. M6G lambat untuk melewati sawar darah
otak selama kedua serap dan fase eliminasi.)
Adverse Effects:
Morphine is available in a variety of dosage forms including oral
(immediate and controlled release), rectal, intravenous, epidural, and
intramuscular. Morphine is well known for its ability to induce sedation and
euphoria, often described as a dreamlike state. The euphoric effects are
believed to contribute to reinforcement and abuse of morphine. Morphine is
currently a schedule II controlled substance and package inserts include a
warning that the drug may be habit forming. Morphine and M6G are central
nervous system (CNS) depressants and both inhibit respiration. Patients are
also warned that morphine may impair abilities necessary for the safe operation
of a motor vehicle.
The most common adverse effects in patients treated with morphine are sedation,
dizziness, nausea, vomiting, sweating, and constipation. Morphine may also
cause visual disturbances, transient hallucinations, circulatory depression and
allergic reactions. Drugs that act as CNS depressants (including alcohol,
benzodiazepines, anesthetics, antipsychotics and tricyclic antidepressants) may
produce at least additive effects in combination with morphine.
(Morfin tersedia dalam berbagai bentuk sediaan, termasuk oral (pembebasan
segera dan dikendalikan), rektal, intravena, epidural, dan intramuskular.
Morfin adalah terkenal karena kemampuannya untuk menginduksi sedasi dan
euforia, sering digambarkan sebagai negara mimpi. Efek euforia diyakini
berkontribusi pada penguatan dan penyalahgunaan morfin. Morfin saat jadwal II
bahan yang dikendalikan dan menyisipkan paket termasuk peringatan bahwa obat
tersebut dapat membentuk kebiasaan. Morfin dan M6G adalah sistem saraf pusat
(SSP) depresi dan keduanya menghambat respirasi. Pasien juga memperingatkan
bahwa morfin dapat mengganggu kemampuan yang diperlukan untuk operasi yang aman
dari kendaraan bermotor.
Efek samping yang paling umum pada pasien yang diobati dengan morfin adalah
sedasi, pusing, mual, muntah, berkeringat, dan sembelit. Morfin juga dapat
menyebabkan gangguan penglihatan, halusinasi sementara, depresi peredaran darah
dan reaksi alergi. Obat yang bertindak sebagai depresan SSP (termasuk alkohol,
benzodiazepin, anestesi, antipsikotik dan antidepresan trisiklik) dapat
menghasilkan setidaknya efek aditif dalam kombinasi dengan morfin.)
Methods of
Analysis:
There are
published GC, HPLC, GC/MS, LC/MS and LC/MS/MS methods for the determination of
morphine and its glucuronide metabolites. Morphine and its glucuronide
metabolites may be collected during solid phase extraction from the same
column, however differences in polarity of these compounds may require separate
elution solvents. Hydrolysis may be performed with heat and acidic conditions
or enzymatically (b-glucuronidase).
Glucuronidated metabolites are likely to elute as a group separate from their
free opioid counterparts depending on the type of column used for
chromatography.
(Ada diterbitkan GC, HPLC, GC / MS, LC / MS dan LC / MS / MS metode untuk
penentuan morfin dan metabolit glukuronat nya. Morfin dan metabolit glukuronat
yang dapat dikumpulkan selama ekstraksi fase padat dari kolom yang sama, namun
perbedaan polaritas senyawa ini mungkin memerlukan pelarut elusi terpisah.
Hidrolisis dapat dilakukan dengan panas dan kondisi asam atau enzimatik
(b-glukuronidase). Metabolit Glucuronidated cenderung mengelusi sebagai
kelompok terpisah dari rekan-rekan mereka gratis opioid tergantung pada jenis
kolom yang digunakan untuk kromatografi.)
Antemortem Levels – Chronic Pain Patients, Serum/Plasma
In one
reported case study, three patients with renal failure exhibited respiratory
failure following morphine administration. M6G plasma levels ranged from 130 to
1,100 ng/mL with morphine levels less than 4 ng/mL. Following ingestion of 5
grams of sustained release morphine, M3G, M6G and morphine plasma levels at 60
hours post ingestion were 6,200 ng/mL, 11,000 ng/mL and 620 ng/mL respectively.
Based on observations that M3G concentrations exceed free morphine within 2
hours post-dose, several methods have been proposed to estimate survival time
by comparing morphine and metabolite concentrations. This technique often uses
the free/total ratio, comparing morphine levels before and after hydrolysis. If
the free morphine is less than some percentage of the total, it is assumed that
the individual had time to metabolize the dose. However, if the free morphine
constitutes the majority of the total, the death was probably acute and the individual
did not have time for metabolism to take place. Since hydrolysis introduces an
additional source of uncertainty to the analysis, many recent reports are using
specific measurements of morphine, M3G and M6G to determine total morphine. In
two cases of heroin overdose, blood levels were 360 ng/mL morphine, 82 ng/mL
M3G and 5 ng/mL M6G in an acute death and 110 ng/mL morphine, 1900 ng/mL M3G
and 120 ng/mL M6G in a delayed deat.
(Dalam satu studi kasus yang dilaporkan, tiga pasien dengan gagal ginjal dipamerkan
kegagalan pernafasan setelah pemberian morfin. M6G kadar plasma berkisar antara
130 sampai 1.100 ng / mL dengan tingkat morfin kurang dari 4 ng / mL. Setelah
mengkonsumsi 5 gram morfin rilis berkelanjutan, M3G, M6G dan morfin tingkat
plasma pada 60 jam pasca konsumsi yang 6.200 ng / mL, 11.000 ng / mL dan 620 ng
/ mL masing-masing.
Berdasarkan pengamatan bahwa konsentrasi M3G melebihi morfin gratis
dalam 2 jam pasca-dosis, beberapa metode telah diusulkan untuk memperkirakan
waktu kelangsungan hidup dengan membandingkan konsentrasi morfin dan metabolit.
Teknik ini sering menggunakan rasio bebas / total, membandingkan tingkat morfin
sebelum dan sesudah hidrolisis. Jika morfin bebas kurang dari beberapa
persentase dari total, diasumsikan bahwa individu memiliki waktu untuk
memetabolisme dosis. Namun, jika morfin bebas merupakan mayoritas dari total,
kematian mungkin akut dan individu tidak punya waktu untuk metabolisme
berlangsung. Karena hidrolisis memperkenalkan tambahan sumber ketidakpastian
untuk analisis, laporan terakhir banyak yang menggunakan pengukuran spesifik
morfin, M3G dan M6G untuk menentukan morfin total. Dalam dua kasus overdosis
heroin, tingkat darah adalah 360 ng / mL morfin, 82 ng / mL M3G dan 5 ng / mL
M6G dalam kematian akut dan 110 ng / mL morfin, 1900 ng / mL M3G dan 120 ng /
mL M6G di sebuah DEAT tertunda.)